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GYROSCOPIC WAVES IN A ROTATING LIQUID LAYER

UDC 534.1 : 532.59I. N. Soldatov

The dispersion characteristics of gyroscopic waves in an incompressible liquid layer in a cavity of a
rapidly rotating cylinder are studied. It is shown that in a viscous incompressible liquid layer, an
inertial wave can be represented as the sum of six helical harmonics. The effects of the liquid viscosity
and the ratio of the wave frequency to the angular velocity of rotation of the cylinder on the real and
imaginary parts of the wavenumber are studied.
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Introduction. Wave processes in a liquid with the effect of the Earth’s rotation taken into account were
considered in papers dealing with waves in the ocean (see, for example, [1–4] and the bibliography therein). The
strong effect of rotation on the liquid dynamics is exemplified by rotary systems. Rotors with a liquid-containing
cavity, in which the centrifugal force can be several hundred thousand or even several millions of times the gravity.
Disturbance of the balance between the pressure gradient and the Coriolis force can lead to the generation of wave
motions in the rotating liquid, which are called inertial or gyroscopic waves. These waves play an important role
in the problems of dynamics of rotors, turbines, separators, centrifuges, and rotating aircraft containing a liquid,
and in some geophysical problems (flows in the Earth’s liquid core [5]). Wave phenomena in a rotating liquid layer
can have a significant effect on a number of technological processes (in particular, sedimentation processes), phase
equilibria in multicomponent liquids, and on the aircraft flight trajectory. The dynamics of inertial waves in a
liquid filling a rotating cylinder has been experimentally studied in a number of papers (see [6, 7] and references
therein). Stationary gyroscopic waves in a circular cylindrical layer of an ideal liquid bounded by solid walls were
studied in [8, 9]. Dispersion relations were obtained and dependences of dimensionless wavelengths on dimensionless
frequencies were constructed. The behavior of a low-viscosity liquid in a rotating horizontal cylinder as a function
of the rotation velocity and the degree of filling was studied in [10]. The resonant generation of waves in a liquid
filling a rotor cavity, which is the main factor responsible for instability of steady-state rotation of rotary systems
was investigated in [11–19].

The present investigation of the properties of gyroscopic waves in a rotating liquid layer is motivated by
interest in the problem of the stability of rotary systems with a fixed point at which the angular velocity of rotation
of a rotor is maintained constant by a drive. A stability analysis method for similar rotary systems was proposed
in [15, 17]. In this method, one of the main stages involves calculation of the moments of the forces exerted by the
liquid on the rotor walls during steady-state conical precession of the rotor. It is easy to show that, in the case
of conical precession, the steady-state hydrodynamic problem is directly related to the problem of generation of
inertial waves in a liquid layer in a cavity of a solid body rotating around a stationary axis. In the present paper,
we consider the kinematic part of the hydrodynamic problem, namely, the dispersion properties of gyroscopic waves
in a rotating liquid layer.

1. Helical Harmonics. We consider an incompressible viscous liquid layer in an infinite cylinder of circular
cross section, which rotates rapidly around the symmetry axis at a constant angular velocity Ω. The influence of
gravity is ignored. We introduce a noninertial cylindrical coordinate system Orϕz attached to the cylinder with
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the z axis directed along the symmetry axis. In the unperturbed state, the liquid moves together with the rotating
solid cylindrical shell as a whole unit:

v0 = 0, p0 = pa + ρΩ2(r2 − b2)/2 (1.1)

(pa is the pressure in the cylinder cavity free from the liquid, b is the radius of the free unperturbed surface, and
ρ is the density).

After linearization (1.1), the motion of the liquid in the vicinity of the unperturbed state is described by
linear Navier–Stokes equations and the incompressibility equations

∂v

∂t
= −∇p

ρ
+ 2[v,Ω] + νΔv, div v = 0. (1.2)

The following boundary conditions are specified: the condition of attachment of liquid particles to the side wall of
the cavity (r = a)

v = 0, (1.3)

the condition of zero tangential stresses, the continuity condition for normal stresses, and the kinematic condition
on the free surface of the liquid (r = b)

1
b

∂u

∂ϕ
+

∂v

∂r
− v

b
= 0,

∂w

∂r
+

∂u

∂z
= 0,

−p − ρΩ2bh + 2μ
∂u

∂r
= 0,

∂h

∂t
− u = 0.

(1.4)

Here u, v, and w are the radial, azimuthal, and axial components of the velocity v, μ and ν = μ/ρ are the dynamic
and kinematic viscosities, respectively; the function h(ϕ) defines the free-surface shape of the liquid: r = b + h(ϕ)
and p is the pressure.

Equations (1.2) admit particular solutions of the form

κv = rotv; (1.5)

v = v∗(r) ei(ωt+kz+mϕ), m = 0,±1,±2, . . . ; (1.6)

p = −2ρΩκ
−1w, (1.7)

if the cyclic frequency ω, the vorticity parameter κ, and k are linked by the relation

ωκ − 2Ωk − iνκ
3 = 0. (1.8)

This is easily obtained by applying the rot operation to the first equation of (1.2) and using (1.5). For the helical
fields studied, the first equation of (1.2) can be written as

∂v

∂t
= −∇

(p

ρ
+

2
κ

(v,Ω)
)

+ rot
( 2

κ

[v,Ω] − ν rotv
)
,

whence follows the expression for the pressure (1.7).
Applying the rot operation to (1.5), we obtain

Δv + κ
2v = 0. (1.9)

Equation (1.9) has the simplest form in the projection onto the z axis:
( ∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂ϕ2
+

∂2

∂z2
+ κ

2
)
w = 0. (1.10)

Let us substitute (1.6) into (1.10). Then, the amplitude w∗(r) of the axial velocity component should satisfy the
Bessel equation

d2w∗
dr2

+
1
r

dw∗
dr

+
(
− m2

r2
+ λ2

)
w∗ = 0,
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where λ2 = κ
2 − k2. We note that amplitudes of the radial velocity u∗ and azimuthal velocity v∗ are related to w∗

as follows:

u∗ =
imκ

λ2r
w∗ +

ik

λ2

dw∗
dr

, v∗ = −mk

λ2r
w∗ − κ

λ2

dw∗
dr

. (1.11)

Below, the subscript asterisk is omitted.
2. Effect of Viscosity on Gyroscopic Waves. We introduce the dimensionless variables: r′ = r/a,

z′ = z/a, τ = ω/Ω, δ = b/a, κ
′ = κa, k′ = ka, λ′ = λa, and the Ekman number E = ν/(Ωa2). Below, the primes

are omitted. Equation (1.8) in dimensionless variables becomes

τκ − 2k − iEκ
3 = 0. (2.1)

One of the roots of Eq. (2.1) depends on the parameters of large-scale motion of the liquid:

κ1 = −1
2

( s

3E
− i

τ

s

)
− i

√
3

2

( s

3E
+ i

τ

s

)
, (2.2)

and the other two roots depend on the parameters of the boundary layers:

κ2 =
s

3E
− i

τ

s
, κ3 = −1

2

( s

3E
− i

τ

s

)
+

i
√

3
2

( s

3E
+ i

τ

s

)
.

Here s = (27k + 3
√

3it3E−1 + 81k2 )1/3E2/3(
√

3/2 + i/2). In many cases, the Ekman number E is very small, and
if the value of τ is not close to zero, we have

κ1 ≈ 2
τ

k + i
8E
τ4

k3 + O(E2), κj ≈ (−1)j+1

√
|τ |
2E

(
− τ

|τ | + i
)
− k

τ
+ O(E) (j = 2, 3).

Using (1.11), we seek a solution only for the axial velocity component w. This solution can be represented as

w =
3∑

l=1

3∑
j=1

CljZ
(l−δ1j)
m (λjr),

where Clj are constants such that C12 = C13 = C31 = 0, δ1j is a Kronecker delta function, which is equal to unity
for j = 1, Z

(0)
m (λ1r) = Jm(λ1r), Z

(1)
m (λ1r) = Ym(λ1r), Jm(λ1r) and Ym(λ1r) are Bessel functions, Z

(l)
m (λjr) =

H
(l−1)
m (λjr) at l = 2, 3, j = 2, 3, H

(l−1)
m (λjr) is a Hankel function of the mth order, and λ2

j = κ
2
j − k2. It should

be noted that, along with Bessel functions of the 1st and 2nd kinds, Eq. (2.3) contains Hankel functions, which
are more convenient for describing boundary layers than the other cylindrical functions. The function H

(1)
m (λjr)

vanishes for an infinite value of the complex argument for which its imaginary part is positive, H
(2)
m (λjr) vanishes

when the imaginary part of the argument is negative. Substituting solution (2.2) into boundary conditions (1.3)
and (1.4), transformed using (1.11) in such a manner that they contain only the axial velocity component, we obtain

3∑
l=1

3∑
j=1

(m(κj − k)
λ2

j

Z(l−δ1j)
m (λj) +

k

λj
Z
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m−1 (λj)

)
Clj = 0,

3∑
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3∑
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j
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m (λj) − κj
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Z
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)
Clj = 0,

3∑
l=1

3∑
j=1
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m (λj)Clj = 0,

3∑
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3∑
j=1
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2
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2
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j
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Z
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3∑
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(m(κ2
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(κ2
j − 2k2)δ

λj
Z
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m−1 (λjδ)

)
Clj = 0,
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Fig. 1. Real part of the wavenumber for the first four modes for E = 0.5 · 10−4, m = 1, δ = 0.7: the
solid curves refer to μ �= 0 and the dashed curves to μ = 0.

Fig. 2. Imaginary part of the wavenumber for the first four modes for E = 0.5 · 10−4, m = 1, and
δ = 0.7.

3∑
l=1

3∑
j=1

[( 2
κj

− m(κj − k)
λ2

jτ
− 2imE(m2

κj − m2k + mκj − k + kλ2
jδ

2)
λ2

jδ
2

)
Z(l−δ1j)

m (λjδ)

+
(
− kδ

λjτ
+

2iE(mκj − k)
λjδ

)
Z

(l−δ1j)
m−1 (λjδ)

]
Clj = 0.

From the condition of solvability of this system of equations for the six unknown constants Clj , one can
derive the dispersion equation. It should be noted that the matrix is ill-conditioned; therefore, in the calculations,
it is reasonable to redefine some of the coefficients Clj as follows:

C′
22 = C22H

(1)
m (λ2δ), C′

23 = C23H
(1)
m (λ3δ), C′

32 = C32H
(2)
m (λ2), C′

33 = C33H
(2)
m (λ3).

The dispersion curve has a countable set of branches. Figures 1 and 2 give the real and imaginary parts
of the wavenumber k for the first four modes for E = 0.5 · 10−4, m = 1, and δ = 0.7. Surface waves correspond
to n = 0. For comparison, Fig. 1 gives the dispersion curves obtained for the limiting case (μ = 0), where the
dispersion equation has the relatively simple form

[|k|γJm−1(|k|γ) − m(1 − 2/τ)Jm(|k|γ)][|k|δγYm−1(|k|δγ) − (m − 2m/τ + 4 − τ2)Ym(|k|δγ)]

− [|k|δγJm−1(|k|δγ) − (m − 2m/τ + 4 − τ2)Jm(|k|δγ)]

× [|k|γYm−1(|k|γ) − m(1 − 2/τ)Ym(|k|γ)] = 0 (γ =
√

4/τ2 − 1 ).

The larger the mode number, the greater the effect of viscosity on the damping coefficient (the imaginary
part of the wavenumber k) since an increase in the number leads to a complication of the spatial structure of the
mode, an increase in the viscous stress, and an increase in the wave-energy dissipation.
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